
Object Counting by Leveraging CNN and LSTM with
Multi-Source of Input

Xuan Li
xuanli1@andrew.cmu.edu

Fabricio Flores
wflores@andrew.cmu.edu

1 Introduction

Counting objects instances in images or sequence of image (video) is a challenging problem to solve
in computer vision. A great many solutions have been developed to count people, cars and other
objects, while approaches using canical vision features (for example, SIFT) are not capable to achieve
state-of-art performance. Nowadays, neural network architectures has been heavily exploited instead,
and have been showed to outperform the traditional approaches for various objects including traffic,
animal, and occupancy [9]. On the other hand, LSTM have been showed to model sequential features
well as compared to traditional time series models such autoregressive models [8].

In general, the obstacles encountered in the object counting fields includes: variation of object shapes,
overlapping, perspective view, variable scale, and model generalization efficiency. For instance, the
approach taken to count vehicle in highways or people in crowded scenarios might be fail to count
cats on a photo. Similarly, counting objects on a single photo could be of different mechanism as
counting objects in real time video. The problems faced in the previous examples have to deal with
object occlusion (multiple objects overlaps) and the perspective, where very small objects are present
in the distance.

In this work we are interested in the problem of vehicle counting, using images that suffer from low
frame rate, low resolution, high occlusion and large perspective [1,2,8,9]. An example is listed in
Figure 1. Not only restricted in the number of objects actually present in the image, we are also
interested to extract density of objects which contains rich spatial features. In other words, for this
project we would build a model that could output the density as well as volume of vehicle given a
sequence of frames, which leverages the task of objection detection and counting.

Inspired by work[1,2,8,9], in this paper we implemented our model by incorporating Convolutional
Neural Networks (CNN) for spatial density extracting, and Long Short Term Memory (LSTM)
for temporal count prediction, and calibrate our model on a open source traffic dataset for vehicle
counting. Also, to tackle the vanishing gradient issues [11], in the model we adopt identity passing in
CNN, and also in LSTM to learn counting in a residual fashion. Thus, during training we require
multi-source of input, including raw RGB image and its corresponding density map image with same
dimension, while ground truth of counts could be acquired by summing over the pixels of the density
map. The detailed architecture and configuration of the model is illustrated in Section 3, while results
are compared in Section 5 and discussed in Section 6.

10707 Class Project



Figure 1: Example of data: low resolution, high occlusion

2 Related Work

2.1 Counting by clustering

This approach relies on the assumption that individual motion field or visual features are relatively
uniform, hence coherent feature trajectories can be grouped together to represent independently
moving entities[7]. One of the problems of this approach is that relies on the assumption of motion
coherency, thus estimation is not adequate when objects remain static throughout frames or counting
is not performed in continuous images frames. On the other hand, the algorithm might fail to handle
the case that objects suffering from high occlusion [2].

2.2 Counting by detection

In the problem of localization and classification, the task is to detect and classify multiple objects
at the same time. Object detection is the problem of finding and classifying a variable number of
objects on an image. By a variable number we imply that the output in object detection could be
different from image to image.

The current methods used for object detection-counting relies on the approach known as Fast RCNN
and Faster CNN [6]. These methods classify objects by regions proposals using convolutional
networks. This approach work in a multi-stage sequence, first detecting object boundaries, then
performing identification and finally counting if necessary. However, if a high number of objects
are present in an image these methods would perform rather slow and thus not suited for real time
processing. The drawback of this approach is mainly its scalability and real-time stability, both during
the training and during the actual testing while object detection was performed.

2.3 Counting by regression

For images with crowded objects, counting by regression would avoids actual segregation of objects
and estimate the crowd density directly based on holistic and collective description of crowd patterns
[9, 10]. Counting by regression is a feasible method for crowded environments where detection and
tracking are difficult to be implemented in real-time. These methods work by defining a mapping
from the input image features to the object counts. In other words, the process accounts for learning a
map from local image features to object density maps. Once the algorithm is trained, the object count
is obtained by simply integrating over regions in the estimated density map.

2.4 Deep learning and LSTM based counting methods

Attempts have been made to combine CNN with recurrent neural networks (RNN) in order to capture
the spatio-temporal information of tasks such as video description and multi label classification[1,
9, 10]. There models integrated the essence of CNN for spatial object detection, and LSTM for
temporal regression, which has been regarded as the state-of-the-art architecture for spatial-temporal
prediction tasks for various type of objects [8]. For our project we implement our model following
the CNN-LSTM outline for traffic counting tasks.

2



3 Models and Training

3.1 Model Architecture

As it is shown in Figure 2, we refer the implementation in [1] as our basic structure, with CNN⇒
LSTM⇒ residual-learning modules in sequence. This architecture takes raw RGB data image and
density map (upper image in the dashed box) as input during training, and only require RGB images
when making predictions. Basically, the functions and components in each of the modules are

• CNN module (mainly conv, deconv, maxpooling and atrous layers) with identity passing
(vertical black arrow) for spatial feature extraction. Atrous layers are helpful for upsampling
by inserting holes between nonzero filters [1], and extract dense feature for deconv layer for
density map reconstruction.

• a stacked LSTM module to generate refined temporal features given the extracted spatial
features. Given a time step of 5, the module takes the flatten density map predicted from
CNN module in a time distributed manner.

• Finally a fully connected (FC) regression layers to predict object counts based on the
combined spatial-temporal features (sum over density map, and output of LSTM) in residual
fashion.

To see the detailed parameter setting of the network please refer to our repository in github 1. Basically,
we select a similar configuration as VGG16 for the ‘conv’ and ’atrous’ layers, in terms of filter size
and numbers. After upsampling and ‘deconv’, we use a 1× 1× 1 ‘conv’ layers (feature reweighting)
to predict density map. We also apply ‘L2’ regularization on all layers to prevent overfitting.

3.1.1 Baseline Model 1: CNN Only

The configuration of our first baseline model is showed in Figure 8. Ignoring the spatial features and
count regression, it only learns the 2D density representation of the objects, and by summing over
the predicted density map we retrieve the count statistics. The detail of this model could be found in
‘CNN_baseline.py’.

3.1.2 Baseline Model 2: CNN with Residual Regression

The configuration of the second baseline model is listed in Figure 9. In addition to baseline model
1, it has a fully connected regression layer to predict counting based on the residual passing from
density map. The total loss would be a weighted sum of density map and counts. The detail of this
model could be found in ‘CNN_baseline_residual.py’.

3.1.3 Proposed Model: CNN-rLSTM

Our proposed model is illustrated in Figure 10. Given a time step of 5, the LSTM layers take the time
distributed output of CNN part, and a FC layer is attached at the end of LSTM to learn the residual of
true counts given the sum of density map. Also, the total loss is a weighted combination of density
map and counts. The detail of this model could be found in ‘CNN_rLSTM.py’.

Figure 2: Network Architecture

1https://github.com/kkkacfly/10707

3



3.2 Training

3.2.1 Loss Functions

In order to train and evaluate the performance of the architecture the following loss function is
selected

L = LD + λLC ,

where LD accounts for the Euclidean distance that measures the difference between the estimated
density and the ground truth. This loss function function LD for the density map estimation is given
by

LD =
1

2N

N∑
i=1

P∑
p=1

‖Fi(p,Θ)− F 0
i (p)‖22

where N is the batch size and Fi(p) is the estimated density for pixel p in image i and Θ is the
parameter of the CNN module.

The second term of the loss function LC accounts for the count estimation and is given by

LC =
1

2N

N∑
i=1

(Ci − C0
i )2

where C0
i is the ground truth counting number of frame i and Ci is the estimates count of frame i

as well. Finally the value λ is a parameter that account for the importance of the count loss. Thus
by simultaneously learning the CNN for density map and the LSTM for counting each task can be
trained with fewer parameters.[1] In all, our objective function could be regarded as the summed
Mean Square Error (MSE) of density map and count. We will refer the loss as ‘MSE’ in the following
paragraphs.

3.2.2 Evluation Metrics

In order to evaluate the performance of different configurations in the network architecture three eval-
uation metrics are used: (i) Mean Absolute Error (MAE); (ii) Mean square error (MSE). Particularly,
we use MAE to evaluate the loss of counts, and use MSE for the loss of density map.

3.2.3 Training Algorithm

For baseline model 1 and 2 the training could be realized with standard back propagation. For the
proposed model, the training procedure is explained in Algorithm 1. Basically, the input of the
model should be a sequence of image and density map. Traing in batches, the input is sequentially
processed, the loss is accumulated at the last time step and then model parameters are updated using
ADAM learner. Initially we set the learning rate as 0.001, and λ as 0.001. All our test are conducted
on a NVIDIA 1070 GTX GPU, and the average running time per epoch are 120s, 140s, 230s for each
of the model respectively.

4 Dataset

4.1 Description

TRANCOS [3]: 2 It has 1244 RGB images of traffic volume in shape 480× 640, with ground truth
of vehicle counts, density map, ROI map. The average number of vehicle per image is around 30,
and following the same setting as in [1,2,3,9], we segmented the first 831 images as training set, and
take the latter 421 images as testing set. Samples of the RGB images and density map are showed
in Figure 1 and 3. It is observed that there exists a high variation camera angle, vehicle scale, and
occlusion.

2http://agamenon.tsc.uah.es/Personales/rlopez/data/trancos

4



Algorithm 1: Batched CNN-rLSTM Training Algorithm

Input :sequential RGB images: {X11, ..., Xnm}, Xij ∈ Rh×w×c

Output :sequential density map {D11, ..., Dnm}, Dij ∈ Rh×w

Parameter :Θ,Γ,Φ

1 // initialize parameters
2 for i = 1 : n do
3 for j = 1 : m do
4 D̂ij = FCN(Xij ; Θ)

5 LDj = L2(Dij , D̂ij)

6 Cr = FC(LSTM(D̂ij ; Γ); Φ)

7 Cij = TensorSum(D̂ij) + Cr

8 LCj = L2(TensorSum(Dij , Cij))
9 end

10 L =
∑

j LDj + λ
∑

j LCj

11 update
12 Θ,Γ,Φ← ADAM(Θ,Γ,Φ)
13 end

4.2 Preprocessing

As it is seen in left column in Figure 3, there exist ambiguous regions in the original raw images,
which is hard even for hand-labeling of vehicle. Thus, besides raw images, in the original dataset
the researchers also included a mask map for each of the image to indicate the region of interests,
and the ground truth density is also corresponding to the masked images. Thus, we generated the
input image by pointwise multiplication with the mask, and a sample is showed in the second column
in Figure 3. Also, inspired by VGG 16, we subtract the global mean of RGB channel separately to
reduce variation.

Figure 3: Sample of Processed Image and Density Map: TRANCOS

4.3 Data Augmentation

Since the number of original training set is relatively small compared with the number of parameter
of model, we tried several image generation methods using ‘cv2’ package including:

• flipped images: horizontally flip the processed training set including raw RGB image and
density map

• cropped images: randomly crop the training set using a fixed scale, on both of RGB image
and density map

• adjust contrast/brightness: randomly adjust the contrast/brightness within scale range
[0.2, 0.8] on the training set (raw RGB image only)

5



5 Result

5.1 Comparison of Different Data Augmentation

First we evaluate the performance of different approaches of data augmentation mentioned in Section
4.3, using baseline model 1. The convergence property is showed in Figure 4, and the comparison
of loss is listed in Table 1. Here Case 1, 2, 3 refers to flipped, cropped and adjusted brightness
processing. It is observed that in general the flipped case converges faster, but eventually the other
two cases would converge to a local optimal with minimum MAE of count. Due to the limited
computation resource we have at hand, for the following experiment we augmented the training set
only using random brightness.

MSE MAE
Case 1 0.06 5.46
Case 2 0.09 4.75
Case 3 0.08 4.47

Table 1: Comparison on Different Data Augmentation

Figure 4: Comparison of Different Data Augmentation

5.2 Comparison of Different Models

We run 100 epochs of each of our model With the augmented training set, The convergence property
(training set), prediction of count trend (test set), prediction of density map (test set) are showed in
Figure 5, 6 and 7 respectively. It is observed that CNN-rSLTM converges asymptotically faster than
the two baseline models, and it attain a lower error rate in terms of both MSE and MAE for training.
However, as it is reflected in Table 2, within 100 epochs the MAE on the test set does not converge to
a lower range compared with Baseline model 2, which might be due to insufficient training. Thus, for
next stage would try to fine-tune the model with another 100 epochs for evaluation.

6



Figure 5: Comparison of Different Models: Loss

Second, in Figure 6 it is observed that in general Baseline 2 and CNN-rLSTM match the count trend
visually better than Baseline 1, which might be due to the additional residual regression output layer.
In 7, it is seen that all of the models can basically learn the shape of density map, but none of them
can assign proper density (weights) to the corresponding pixel. In other words, the occlusion problem
has not been fully tackled given the current CNN settings.

Figure 6: Comparison of Different Models: Count Prediction

7



Figure 7: Comparison of Models: Density

Finally, besides the three models proposed in this paper, in Table 2 we also compared with three
other similar models implemented in work[1,2]. The ‘FCN-MT’, ‘FCN HA’ are similar like Baseline
model 1, but are following the architecture of Resnet50 and achieve state-of-the-art performance on
this dataset; the ‘FCN-rLSTM’ has a similar structure as ‘CNN-rLSTM’, but with different layer
settings and identity passing. First it is seen that our models can achieve comparable results as in
[1,2]. However, the most complicated ‘CNN-rLSTM’ did not outperform the baseline ones, but
interestingly, this observation is in accordance with the phenomenon in work [1,2], which is also
reflected in Table 2 as well.

MSE MAE
FCN-MT [2] - 5.31
FCN-HA [1] - 4.21

FCN-rLSTM [1] - 4.38
Baseline 1 0.08 4.47
Baseline 2 0.04 5.73

CNN-rLSTM 0.02 4.63

Table 2: Comparison on Different Models

6 Conclusion

In this paper, we have built, trained and tested three combination of ‘CNN’, ‘LSTM’, ‘identity pass’,
‘residual regression’ to predict volume counts as well as density map on a public traffic vehicle
dataset. We were able to achieve comparable results with state-of-the-art methods, and observe
similar behaviors as mentioned in work[1]. In all, we have concluded that

(a) A proper data augmentation would benefit the model in terms of convergence as well as
achieving lower error rate.

(b) ‘CNN’ module is able to extract the general outline of density map (spatial distribution),
but can not learn to assign weight properly, which might be due to the frequent up/down
sampling.

(c) ‘CNN’ framework only might be sufficient for count prediction purpose only, and within
100 epochs the more complicated spatial-temporal ‘CNN-rLSTM’ does not show significant
improvement in terms of MAE.

(d) Although the more complicated ‘CNN-rLSTM’ would converge faster than the baseline
models, to achieve a comparable performance it might require more training epochs as well
as a learner with variable learning rate.

8



References

[1] Zhang, Shanghang, et al. (2017) FCN-rLSTM: Deep Spatio-Temporal Neural Networks for Vehicle
Counting in City Cameras. arXiv preprint arXiv:1707.09476

[2] Zhang, Shanghang, et al. (2017) Understanding Traffic Density from Large-Scale Web Camera Data." arXiv
preprint arXiv:1703.05868

[3] Onoro-Rubio, Daniel, & Roberto J. López-Sastre. (2016) Towards perspective-free object counting with
deep learning. European Conference on Computer Vision. Springer International Publishing.

[4] Chan, Antoni B., et al. (2008) Privacy preserving crowd monitoring: Counting people without people
models or tracking. Computer Vision and Pattern Recognition, 2008. CVPR 2008.

[5] Lempitsky, Victor, & Andrew Zisserman. (2010) Learning to count objects in images. Advances in Neural
Information Processing Systems.

[6] Yali Amit, Pedro Felzenszwalb. https://cs.brown.edu/p̃ff/papers/detection.pdf

[7] Loy C.C., Chen K., Gong S., Xiang T. (2013) Crowd Counting and Profiling: Methodology and Evaluation.
In: Ali S., Nishino K., Manocha D., Shah M. (eds) Modeling, Simulation and Visual Analysis of Crowds. The
International Series in Video Computing, vol 11. Springer, New York, NY

[8] Zhang, Yingying Zhou, Desen Chen, Siqin Gao, & Shenghua Ma, Yi. (2016). Single-Image Crowd Counting
via Multi-Column Convolutional Neural Network. 589-597. 10.1109/CVPR.2016.70.

[9] Xiong, Feng, Xingjian Shi, & Dit-Yan Yeung. Spatiotemporal modeling for crowd counting in videos. arXiv
preprint arXiv:1707.07890 (2017).

[10] Sindagi, Vishwanath A., & Vishal M. Patel. Generating high-quality crowd density maps using contextual
pyramid cnns. IEEE International Conference on Computer Vision. 2017.

[11] He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. Proceedings of
the IEEE conference on computer vision and pattern recognition (pp. 770-778).

9



Appendix

Model Architectures

Figure 8: Baseline Model 1: CNN Only

Figure 9: Baseline Model 2: CNN with Residual Regression

Figure 10: Proposed Model: CNN-rLSTM

10


	Introduction
	Related Work
	Counting by clustering
	Counting by detection
	Counting by regression
	Deep learning and LSTM based counting methods

	 Models and Training
	Model Architecture
	Baseline Model 1: CNN Only
	Baseline Model 2: CNN with Residual Regression
	Proposed Model: CNN-rLSTM

	Training
	Loss Functions
	Evluation Metrics
	Training Algorithm


	Dataset
	Description
	Preprocessing
	Data Augmentation

	Result
	Comparison of Different Data Augmentation
	Comparison of Different Models

	Conclusion

