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Motivation

To justify in what perspective that Model predictive control (MPC), with a special format as LQR, can outperform PID
controller. The most simplest case is considered in this setting, i.e., a single state system with single control input. The
system dynamic is assumed to be linear, and no constraints are considered. No disturbance is considered as well. The
examples are considered in continuous state formulation, and it needs to be studied how to extrapolate to the discrete
space case.

LQR

The source references1.

Consider the general case, that we want to solve the following control problem:

min
u(t)

J = G(x(T )) +

∫ T

0

L(x(t), u(t), t)dt

s.t.
dx

dt
= f(x(t), u(t), t)

x(0) = x0

where G(·) is the terminal cost, J is the sum of the terminal cost and stage costs. We define a surrogate cost function J̄
with the augmented term λ:

J̄ = G(x(T )) +

∫ T

0

(
L+ λ(f − dx

dt
)
)
dt

As stated in the reference, along the trajectory, variations in J and hence J̄ should vanish. This follows from the fact
that J is chosen to be continuous in x, u, t. Thus, the variation is expressed as

δJ̄ =
∂G(x(T ))

∂x
δx(T ) +

∫ T

0

[∂L
∂x

δx+
∂L

∂u
δu+ λ

∂f

∂x
δx+ λ

∂f

∂u
δu− λδ

dx

dt

]
dt

The last term above can be evaluated using integration by parts as

−
∫ T

0

λδ
dx

dt
dt = −λ(T )δx(T ) + λ(0)δx(0) +

∫ T

0

dλ

dt
δxdt

and bring in back we have

δJ̄ =
∂G(x(T ))

∂x
δx(T ) +

∫ T

0

(∂L
∂u

+ λ
∂f

∂u

)
δudt+∫ T

0

(∂L
∂x

+ λ
∂f

∂x
+
dλ

dt

)
δxdt− λ(T )δx(T ) + λ(0)δx(0)

1https://ocw.mit.edu/courses/mechanical-engineering/2-154-maneuvering-and-control-of-surface-and-underwater-vehicles-13-49-fall-2004/
lecture-notes/lec19.pdf

https://ocw.mit.edu/courses/mechanical-engineering/2-154-maneuvering-and-control-of-surface-and-underwater-vehicles-13-49-fall-2004/lecture-notes/lec19.pdf
https://ocw.mit.edu/courses/mechanical-engineering/2-154-maneuvering-and-control-of-surface-and-underwater-vehicles-13-49-fall-2004/lecture-notes/lec19.pdf
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The last term is zero, since we cannot vary the initial condition of the state by changing something later in time - it is a
fixed value. To make the variation converges to zero the following conditions must be satisfied:

∂L

∂u
+ λ

∂f

∂u
= 0

∂L

∂x
+ λ

∂f

∂x
+
dλ

dt
= 0

∂G(x(T ))

∂x
− λ(T ) = 0

Thus, we can derive the LQR from the general steps above. For example, for LQR problem without terminal cost, i.e.,
G(x(T )) = 0, and

L =
1

2
Qx2 +

1

2
Ru2

where Q > 0, R > 0. In the case of linear dynamic system, dx
dt = Ax+Bu, we have

∂L

∂x
= Qx,

∂L

∂u
= Ru,

∂f

∂x
= A,

∂f

∂u
= B

using the zero variation condition we have

dx

dt
= Ax+Bu

x(0) = x0

dλ

dt
= −Qx−Aλ

λ(T ) = 0

Ru+Bλ = 0

λ = Px is guessed initially. Then we obtain

PAx+APx+Qx− P 2B2x/R+
dP

dt
= 0

which is the matrix Riccati equation. The steady-state solution is given

PA+AP +Q− P 2B2/R = 0

and finally we get the fixed control policy
u = −BPx/R

One step further, for single state and single input system, we have

P =
AR+

√
A2R2 +B2QR

B2

so that we have

u = −
A+

√
A2 +B2Q/R

B
x = kux

Finally, the dynamic system becomes
dx

dt
= (A+Bku)x

and the solution is
x(t) = x0 exp((A+Bku)t)

and eventually
x(t) = x0 exp(−

√
A2 +B2Q/Rt)

2
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PID

reference2. First we consider the commonly used PI controller. Assume xe, ue are the reference state and input, then
the error term is x− xe. Define

e = xe − x

then the system dynamic is equivalent to

−de
dt

= −Ae+Bu

Given the control policy of PI controller is

u = kp e+ ki

∫ T

0

e(τ)dτ

First differentiate the system dynamic and control policy, we have

−d
2e

dt2
= −Ade

dt
+B

du

dt

and
du

dt
= kp

de

dt
+ kie

then bring it (du/dt) back we have
d2e

dt2
+ (−A+Bkp)

de

dt
+Bkie = 0

Obviously, PI controller leads to second order dynamic system, of the format

d2x

dt2
+ 2ζω0

dx

dt
+ ω2

0x = 0

As indicated in the reference, a desired property for the controller is to respond to changes smoothly without oscillations,
which is equivalent to set ζ = 1, the critical damping. Also, the choice of ω0 is a compromise between response speed
and control actions. Since

kp =
A+ 2ζω0

B
, ki =

ω2
0

B
it is equivalent to say that the choice of kp, ki determine the natural frequency and damping factor of the system. Finally,
the solution of the system is

x(t) = x(0)(1 − ω0t) exp(−ω0t)

which leads to
x(t) = x0(1 − Bkp −A

2
t) exp(

A−Bkp
2

t)

2Chapter 10, Murray
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