
A Minimal Introduction to Reinforcement

Learning

November 9, 2024

With its latest successes on fine-tuning language models as well as generalizing
robotic agents, Reinforcement Learning (RL) has regained attentions ever since
the prevalence of AlphaGO. Unlike the other canonical ML paradigms, RL fol-
lows a different set of terminology which, as I’ve experienced several times, sets
back the path of going from zero to hero. Nonetheless, in this blog I will explain
RL through the lens of supervised learning, and hopefully it could make the
learning curve steeper for interested amateurs.

TL;DR: RL is identical to multi-class regression.

1 Example

Imagine finding knowledge on Google Search. You type some keywords in the
search bar, and Google returns some relevant pages. You evaluate the proximity
between your desired outcome and the displayed pages, and type calibrated
keywords accordingly for another try. You repeat the above procedure till it
shows the desired webpages, or until the time is through.

2 The Formulation of RL

By definition, RL is about making better decisions based on the insights perti-
nent to the observations that are obtained from its interaction with a system.
Through calculated trial and error, it formulated a strategy which reinforces
what it did right, and suppresses what it did wrong.

The key components in RL are marked in different but consistent colors, for
both of the example and definition above. In the terminology of RL

• observations → state s

• decisions → action a

• insights → reward r(s, a)

1



• strategy → policy π(a|s)

• system → environment P(s′|s, a), that returns the next state s′ given
current state s and action a

Here1, the RL interacts with the environment by following a policy π(a|s) for
T times, and obtains a sequence of information (episode) as

s0, a0, r0, s1, a1, r1, · · · sT , aT , rT

Given this information, the goal of RL is to learn the policy that maximizes the
cumulative rewards

max
π

T∑
t=0

r(st, at) (1)

where the action at follows the policy, i.e., at = π(·|st). Essentially, the policy
can be obtained through a neural network Q(s, a),

Q(st, at) =

T∑
t=0

r(st, at) (2)

such that π(·|st) = arg maxaQ(st, at). For problem with m discrete possible
actions, it is identical to m-class classification where the neural network returns
score for each action (class), and yield the one with the highest value as output.

In summary, the goal of RL is to learn a policy π(·|st) that maximizes the
cumulative reward (1) through a neural network Q(s, a) (2). In such manner,
to learn a policy is much the same as a multi-class regression problem.

3 The Connections

For supervised learning, the model fθ(x) is parameterized by θ and the param-
eters need to be learned through supervision.

In regression problem, the supervision is formulated as minimizing the least
squares error, min

θ
(fθ(x)− y)2, where y are the static targets. In essence, the

parameters are learned by forcing the model fθ(x) to converge to the targets.
For example, we can learn θ gradually through gradient descent:

θ ← θ + α · ∇θ (fθ(x)− y)2

Similarly, in RL the model Qθ(s, a) is parameterized by θ, and we can also learn
the parameters through regression.

1Don’t know why but I found the term “Here” is kind of a terminology in RL literatures

2



But what are the targets to converge to? What error to minimize?

In my perspective, the formulation of the target and the error function is the
most intriguing part in RL. Given the definition of Q function in Eq (2) and
a tuple of (s, a, s′, r)2 from an episode, we can utilize the well-known Bellman
Equation and have:

Qθ(s, a)︸ ︷︷ ︸
fθ(x)

∼ r(s, a) + max
a′

Qθ(s
′, a′)︸ ︷︷ ︸

y

(3)

where the squared difference between the left-hand side and right-hand side in
Eq (3) is the temporal difference error to be minimized. Unlike supervised
regression, the targets y are obtained from interactions with the environment
and are no longer static. In other words, the targets are dynamic as they are
collected by the policy during the learning process. Specifically, the training
loop is as follows:

for each epoch:

- collect (s, a, s′, r) through arg maxaQθ(s, a)
- update Qθ(s, a) by minimizing the TD error

as in Eq (3)

Similar to regression problem, we can use gradient descent to iteratively update
the parameters θ at each epoch as:

θ ← θ + α · ∇θ
(
Qθ(s, a)︸ ︷︷ ︸
fθ(x)

− r(s, a) + max
a′

Qθ(s
′, a′)︸ ︷︷ ︸

y

)2
Interestingly, in this setup we implicitly require the convergence of Q function
to an optimality governed by itself.

To conclude, RL can be regarded as a specific case of regression problem, in
which the parameters are learned through minimizing the temporal difference
error, and the targets y are dynamically generated throughout training.

Reference

- Hugging Face tutorial: for beginner
- OpenAI tutorial: for amateur
- PyTorch DQN: sample code

2s′ is the next state in episode

3

https://huggingface.co/learn/deep-rl-course/unit0/introduction
https://spinningup.openai.com/en/latest/user/introduction.html
https://github.com/pytorch/tutorials/blob/main/intermediate_source/reinforcement_q_learning.py

	Example
	The Formulation of RL
	The Connections

