GPU Programming

maps code (kernel [instructions) to physical units (GPU / SMs) in parallel through
virtual threads.

(host software w (device software w (device hardware w

code da lib) kernel
cuda i r?;les JIT
cuda compiler PTX ———> SASS GPU / SMs
cuda driver

:l. load data: DRAM -> L1 cache
1ﬁgh4€vel _————) low-level | 2. compute: cuda / tensor core
3
4

3. synchronize threads (barrier)
| 4. save data: DRAM <- L1 cache

Figure 1: overview and workflow of GPU programming

I. Prerequisites

definitions :: virtual units
e kernel (function): group of instructions.
e instruction: low-level operation on GPU.
e thread: smallest unit that executes instruction.

definitions :: physical units
e SRAM (static random-access memory): on-chip, fast; for register / cache.
e DRAM (dynamic random-access memory): off-chip, slow.

CUDA (Compute Unified Device Architecture)
abstractions

e software platform -> Sec. IV

e parallel programming model -> Sec. lll

e device architecture -> Sec.

Il. Hardware (device)

SM (Streaming Multiprocessor) -- physical unit
definition: the primary unit on GPU that executes instructions through threads. For
H100, each GPU comprises of 132 SMs.

components:
e compute (core)
o cuda: execute scalar arithmetic instructions
¢ operator: {+ - * [}; {AND, OR, NOT, XOR, bit shifts}
+ datatype: INT32, FP32, FP64
o tensor: operate on entire matrices
o special function unit (SFU): i.e., sin(), cos()
e memory (hierarchy)
o register files: 16384 * 32 bit; reallocate for different data types; ~
speed as compute core; private to SM
o L1 data cache: 256 KB; accessed by load / store unit; - speed as
compute core; private to SM
o GPU DRAM: 80 GB; powered by HBM; shared across SM; -- speed
e others
o LO/L1instruction cache: store instructions for SM
o warp scheduler: group threads into warp and assign execution on
each cycle
o dispatch unit: assign instructions to compute core
o |oad [/ store unit (LD/ST): move data between registers and L1 data
cache

L1 Instruction Cache

LO Instruction Cache LO Instruct

Warp Scheduler (82 thread/clk) Warp Scheduler (82 thread/clk)
Dispatch Unit (32 thread/clk) Dispatch Unit (82 thread/clk)

TENSOR CORE TENSOR CORE
4TH GENERATION 6 4TH GENERATION

256 KB L1 Data Cache / Shared Memory

Figure 2: architecture of SM on H100, modified from modal/gpu-glossary

Thread -- virtual unit
hierarchy: thread -> warp -> block -> grid; warps execute on individual SM, blocks
are scheduled onto SMs, and grids utilizes all SMs.

for H100 GPUs, each SM has 64 warps.

hierarchy unit memory access
warp a group of 32 threads register on SM
block a group of 32 warps L1 cache on SM
grid a group of xx blocks DRAM (across SM)

Table 1: hierarchy of memory units

Ill. Software (low-level, device)

pipelines
Parallel Thread Execution (PTX): an intermediate representation for code that will

run on a parallel processor; output from nvcc; just-in-time (JIT) complied -> SASS.

Streaming Assembler (SASS): assembly format for programs running on GPU.
lowest-level format of human-readable code; output from nvcc.

parallelism
Single Instruction, Multiple Thread (SMIT): all threads of a warp execute the same
instruction in parallel.

IV. Software (high-level, host)

cuda libraries

NVML: Nvidia management library, monitor the state of GPU (nvidia-smi).
cuBLAS: cuda basic linear algebra subroutines.

CUPTI: cuda profiling tools interface -> Nsight system [/ Pytorch profiler.
cuDNN: optimized operators on attention, convolution, etc.

compiler (driver)
e nvcc: Nvidia cuda compiler driver; output binary executables and include
PTX /| SASS to be executed on the GPU

* Reference
e https://modal.com/gpu-glossary
e Stanford cs336: Lecture 5
e Best Partners TV (YouTube): GPU ZE#¥I A\ | J4E5F

