
Derivations

Xuan Li

1 from MPC to QP

In this section I will use a one state, one control input with quadratic loss function to illustrate the
equivalence of MPC formulation with Quadratic Programming problem. In addition, this could also
apply to general finite optimal control problem with a linear system dynamic.

1.1 Notations

For the one state variable, one control variable linear MPC (infinite control) problem, a general
expression is

min
U

N−1∑
k=0

q · u2(k)

s.t x(k + 1) = Ax(k) + Bu(k) + w(k)

x ≤ x(k) ≤ x, ∀k = 0, 1, ..., N

u ≤ u(k) ≤ u, ∀k = 1, ..., N − 1

x(0) = x0

where x is the state, u is control input, w is disturbance, N is the optimization horizon, and
U = [u(0), ..., u(N − 1)], W = [w(0), ..., w(N − 1)]. On the other hand, with a different set of
notation, a standard Quadratic Programming problem is expressed as

min
X

XTQX + fTX

s.t. AX ≤ B

where X ∈ RN ,Q ∈ RN × RN f ∈ RNA ∈ RM × RN ,B ∈ RM . In the next part we will derive how
to transfer the MPC problem into QP. The high-level ideas is to regard the X in QP as U in MPC,
and reformulate the state and input constraints in MPC according to the system dynamic.

1.2 Conversion

The derivation is based on induction. First we want to get rid of x in terms of u. Since

x(1) = Ax(0) + Bu(0) + w(0)

x(2) = Ax(1) + Bu(1) + w(1)

= A[Ax(0) + Bu(0) + w(0)] + Bu(1) + w(1)

= A2x(0) + ABu(0) + Bu(1) + Aw(0) + w(1)

x(3) = Ax(2) + Bu(2) + w(2)

= A[A2x(0) + ABu(0) + Bu(1) + Aw(0) + w(1)] + Bu(2) + w(2)

= A3x(0) + {A2Bu(0) + ABu(1) + Bu(2)}+ {A2w(0) + Aw(1) + w(2)}
...

1

from which we can infer
X = ÃU + B̃W + C̃x0

where

Ã =



B 0 · · · · · · 0
AB B · · · · · · 0
A2B AB B · · · 0

...
. . . 0

...
. . .

...
AN−1B AN−2B · · · · · · B



B̃ =



1 0 · · · · · · 0
A 1 · · · · · · 0
A2 A 1 · · · 0
...

. . . 0
...

. . .
...

AN−1 AN−2 · · · · · · 1


and

C̃ = [A,A2, ..., AN]T

Thus, it is easy to see that x(k) could be expressed in terms of control input U, x0 = x(0) and w(k)
which are predefined. In this manner, the original problem could be reformulated only using U. To
be specific, the constraints on original x(k) can be expressed as

x · 1N ≤ ÃU + B̃W + C̃x0 ≤ x · 1N

=⇒ x · 1N − B̃W − C̃x0 ≤ ÃU ≤ x · 1N − B̃W − C̃x0

where 1N = [1, 1, ..., 1]T ,1 ∈ RN . On the other hand, the constraints on u(k) is

u · 1N ≤ U ≤ u · 1N

Lastly, define
Q = q · IN

where IN ∈ RN × RN is the diagonal matrix. Finally, if we set

A =


Ã

−Ã
1N

−1N



B =


x · 1N − B̃W − C̃x0

−
(
x · 1N − B̃W − C̃x0

)
u · 1N

−u · 1N


and the final QP expression is

min
U

UTQU

s.t. AU ≤ B

2

2 from MPC to SQP

2.1 General Idea

In the previous section we have derive how to convert MPC to QP, getting ride of the initial state
variables x(k) using the iterative system dynamic. However, if we take one step back, a more straight
forward equivalent expression would be

min
X

XTQX + fTX

s.t. AX ≤ B

CX = D

so that we can explicit include both control input u(k) and u(k). Indeed, the above formulation
belongs to one canonical Sequential Quadratic Programming (SQP), which could be solved efficiently
by standard solvers. Based on the steps from the previous section, we will derive how to MPC to
SQP below.

2.2 Conversion

Start from MPC induction that

x(1) = Ax(0) + Bu(0) + w(0)

=⇒ x(1)−Bu(0) = Ax(0) + w(0)

x(2) = Ax(1) + Bu(1) + w(1)

=⇒ x(2)−Bu(1) = Ax(1) + w(1)

x(3) = Ax(2) + Bu(2) + w(2)

=⇒ x(3)−Bu(2) = Ax(2) + w(2)

......

x(N) = Ax(N − 1) + Bu(N − 1) + w(N − 1)

=⇒ x(N)−Bu(N − 1) = Ax(N − 1) + w(N − 1)

Thus, if we define the vector X̃ as

X̃ = [x(1), x(2), ..., x(N), u(0), u(1), ..., u(N − 1)]

matrix C̃ ∈ RN × R2N , vector D̃ ∈ R2N as

C̃ =


1 · · · · · · · · · 0 −B · · · · · · · · · 0
−A 1 · · · · · · 0 0 −B · · · · · · 0
0 −A 1 · · · 0 0 0 −B · · · 0

0
. . .

. . .
. . .

... 0
. . .

. . .
. . .

...
0 · · · · · · −A 1 0 · · · · · · · · · −B



D̃ =


Ax(0) + w(0)

w(1)
w(2)

...
w(N − 1)


3

then we can infer the equivalence that
C̃X̃ = D̃

On the other hand, define matrix Ã ∈ R4N × R2N , vector B̃ ∈ R2N , that

Ã =

[
I2N

−I2N
]

B̃ =


x · 1N

u · 1N

−x · 1N

−u · 1N


then the inequality holds

ÃX̃ ≤ B̃

Finally, define Q ∈ R2N × R2N as

Q =

[
0N 0N

0N q · IN
]

Given this, we have reformulated the above MPC problem in SQP format that

min
X̃

X̃TQX̃

s.t. ÃX̃ ≤ B̃

C̃X̃ = D̃

4

3 from nonlinear (bilinear) MPC to Nonlinear Programming

3.1 General Idea

Now assume that bilinear term, the product of state and control variable, exists in the dynamic
equation, which yields the nonlinear MPC formulation as:

min
U

N−1∑
k=0

q · u2(k)

s.t x(k + 1) = Ax(k) + Bu(k) + Cx(k) · u(k) + w(k)

x ≤ x(k) ≤ x, ∀k = 0, 1, ..., N

u ≤ x(u) ≤ u, ∀k = 1, ..., N − 1

x(0) = x0

To make the problem solvable using nonlinear programming (NP) solver ‘fmincon’ in Matlab, it
needs to be converted into the equivalent expression that

min
X

f(X)

s.t. X ≤ X ≤ X

Aeq(X) = 0

where f(·), Aeq(·) are objective function and equality constraints in nonlinear format.

3.2 Conversion

The steps are similar as converting linear MPC to SQP format. Starting from MPC induction that

x(1) = Ax(0) + Bu(0) + Cx(0)u(0) + w(0)

=⇒ {x(1)} −B{u(0)} − {Ax(0) + w(0)} − {Cx(0)u(0)} = 0

x(2) = Ax(1) + Bu(1) + Cx(1)u(1) + w(1)

=⇒ {x(2)−Ax(1)} −B{u(1)} − {w(1)} − {Cx(1)u(1)} = 0

......

x(N) = Ax(N − 1) + Bu(N − 1) + +Cx(N − 1)u(N − 1) + w(N − 1)

=⇒ {x(N)−Ax(N − 1)} −B{u(N − 1)} − {w(N − 1)} − {Cx(N − 1)u(N − 1)} = 0

Thus, define the vector X̃ as

X̃ = [x(1), x(2), ..., x(N), u(0), u(1), ..., u(N − 1)]

matrix C̃ ∈ RN × R2N , vector D̃ ∈ R2N as

C̃ =


1 · · · · · · · · · 0 −B · · · · · · · · · 0
−A 1 · · · · · · 0 0 −B · · · · · · 0
0 −A 1 · · · 0 0 0 −B · · · 0

0
. . .

. . .
. . .

... 0
. . .

. . .
. . .

...
0 · · · · · · −A 1 0 · · · · · · · · · −B


5

D̃ = −


Ax(0) + w(0)

w(1)
w(2)

...
w(N − 1)


then the nonlinear constraints Aeq(·) can be expressed as

Aeq(X̃) = C̃ · X̃ + D̃ · X̃− C · X̃[1 : N] ◦ X̃[N + 1 : 2N]

where ◦ represents the element-wise product of two vector, i.e.,

[x1, y1] ◦ [x2, y2] = [x1x2, y1y2]

In addition, define the corresponding lower and upper bounds as

X̃ =

[
x · 1N

u · 1N

]
and

X̃ =

[
x · 1N

u · 1N

]
Lastly, define

Q =

[
0N 0N

0N q · IN
]

then the objective function as
f(X̃) = X̃TQX̃

Thus, we get the equivalent formulation as

min
X̃

f(X̃)

s.t. X̃ ≤ X̃ ≤ X̃

Aeq(X̃) = 0

6

