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.1 Motivation

1. Definition of futures contracts spread

To profit from the change in the differential of buying/selling the two
related contracts. Essentially, you consider the risk in the difference
between two prices (contract) rather than the risk of an immediate futures
contract. In other words, maximizing difference, minimizing risk.

2. Trading Decision with Risk

Forecast information ratio
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|l. Gaussian Processing
Regression (GPR)

1. Property of Gaussian Distribution

1.1.1 DMarginal Gaussian Distribution

Suppose x = (x1,Xz) is jointed Gaussian ~ N (pu, 2), where

and

Thus, we have

P(zy|z2) ~ N(p1)2, X1)2)

where
M2 = 1+ $12%5, (22 — p2)

and
T2 =211 — 12822 Toa

1.1.2 Sum of Gaussian
Given @1,z € RY, 2y I @5, 21 ~ N(p1,21), 2 ~ N(p2,X2), then we have

T+ xy ~ N(pq + p2, X9 + X9)




|l. Gaussian Processing
Regression (GPR)

2. Inference of GPR

Let X be the matrix of training input, y the vector of output. Assume
yi = f(x;) + €, €; ~ N(U,Ji
and the functional operator
f=[f(z1), f(x2), ..., f(xn)] ~ N(0,K(X, X)) K(X, X):; = k(X;, X)

where k(u,v) is kernel covariance operator that for example

u — v||?
k(u,v) = exp(—u) @

5.2
2GI

Thus, the regression problem is that given X, y, and X, how could we estimate E[y.|y] and Cov[y.|y]’
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|l. Gaussian Processing
Regression (GPR)

2. Inference of GPR, cont

First, use ‘sum of Gaussian’ property, suppose y € RV, y, € RM we know that

y o f(X) i O—ilN N(O K(X,X}—FJEHIN, K(X‘X*)
ve )\ F(X.) o21m '\ K(X..X), K(X.X.)+o02Iy
Second, use ‘Marginal Gaussian Distribution’ property, we have
Ely.|y] = K(X., X)(K(X.X) +02In) "'y

and

Covly.ly] = K(X..X,) - K(X..X)(K(X.X)+02Iy)"'K(X.X.)




[11. Adapting GPR towards
Futures Trading Strategy

1. Kernel covariance selection (Augmented functional
representation)

The key idea of GPR lies in the choice of kernel covariance operator (function), which
models the relationship between corresponding observations (input, x). In this paper, the
authors choose:

d — ¥
1 — )2
k(u,v|l,0,05,075) = 07} (1 + 5 E M) + 0256 (u;, v;)

where §(u;, v;) (0Or &y, ».) 1s the Kronecker delta that

1, uw;,=wv;

(S{Uis U'!'-.\J - { 0, wuy % Ui

The authors considered the covariance based on contribution of each dimension of the
input features separately, and the effect of a dominant feature using Kronecker delta

function.




[11. Adapting GPR towards
Futures Trading Strategy

2. Feature Selection & Engineering & Preprocessing
In all, the feature used in the paper include:

current time-series index or year: the Kronecker delta term is applied on this dimension
operation time: the time at which the forecast 1s made

target time: the time at which the forecast 1s being made

current spread price

the price of the three nearest future contracts

stock-to-use ratio:

vear-over-year difference in total ending stocks

All of these features are standardized with zero mean and unit deviation. For the price

target ,

the trajectory is standardized to start at zero at the start of every year, by

subtracting the first price value.




[11. Adapting GPR towards
Futures Trading Strategy

3. Training (parameter learning)

Given the kernel covariance function, the total hyper-parameter needed to be learned are

s ac

e a,cR ; 2y —a

s o5 R k(u,v|€,a,07,075) = G’_?- (1 + 5 Z ka%k)) + 0% s8(us, v;)
e o, =R T k=l ¥

e LRI

As the authors have claimed 1n the paper, one efficient approach to find the hyper-parameter for Gaussian
Process is to maximize the marginal likelihood of the observed data (given the hyper-parameter). To be
specific, define @ as the hyper-parameter, y € RY are the observation, and X € R" *9 are the input features,
then

0" = argmax logP(y|X; @)
o

Since from Part one we know that P(y|X ;@) follows Multivariate Gaussian (normal) Distribution N (0, X)
(¥ = K(X,X)+ 02Iy) given the kernel function k(u,v;8), which is




[11. Adapting GPR towards
Futures Trading Strategy

3. Training (parameter learning) cont.

! e:{p(— % TE_ly)

Vv (2m)N X .

where |X| = det(X). Thus, to put it back to equation above, we have that

P(y|X;0) =

0" = argmax —%yT(K(X: X:0)+02Iy) 'y — %log K(X,X;0)+0%Iy| - %log(}fr)

] =

which 1s equivalent to

6* = argmax —%yT(K(X,X; 0) +olIy) ly — %log |IK(X,X;0) +o2Iy|
]




[11. Adapting GPR towards
Futures Trading Strategy

3. Training (parameter learning) cont.

Gradient Descent

Given the expression of objective and form of variables, the problem is a non convex optimization problem
and could be potentially solved by gradient descent. First, we can get the gradient of the objective function

as
dlogP(y|X;0) 1 102 _4 1 _, 0%
: =yt YT —X — —tr(2X7" - —
08 2Y sg > ¥~ 3t 90
Thus, the key component to get the gradient is to calculate the matrix g—?. Given the definition in Section
2.2.2, and
for each of the parameter in 8, we have
7)) 2 c c 1 (X} — X}i)2
(6&)1’J_Jf(1+2cx) ‘(_111(1—’_2&)—’_1—1—2&/0)’ C_k=1 fﬁ
0% 1 (X X))z
ZZy. . =9 1 2k Tk
(Z’)Jf i o ( K 20 Z fﬁ )

k=1

0X
dors

)i.j = 20756(X 5, X7)




[11. Adapting GPR towards
Futures Trading Strategy

3. Training (parameter learning) cont.

Gradient Descent

o
do,,

( )é.j = ané(z.})

- d q iv2y —a—1 i Y
B) ) 1 3 (Xi—XI) (X5—X3)
=l | R —— 1 S e r —
(aﬁé)m Uf( i 2a E=1 E%- Ef’?

Algorithm 1: Gradient Descent (Gaussian Process)
Data: X,y

Parameter: 8

initialization: epoch™®*, epoch = 0,0, w, € ;

while epoch < epoch™** do

0; =6, +w- t)log]l;i(gJX,B) :

if |logP(y|X:0) — logP(y|X;8')| > ¢ then
‘ epoch + +;

else
‘ break;

end

end




[11. Adapting GPR towards
Futures Trading Strategy

3. Training (parameter learning) cont.

multi-stage training + sub-sampling




[11. Adapting GPR towards
Futures Trading Strategy

4. Model Evaluation & Comparison between models
4.1 Significance Test

cross-covariance-corrected Diebold-Mariano test for sequential correlated sequence (error trend), with the
assumption of covariance stationarity.

Let d; be the sequence of error difference between two models to be compared. The tested statistic

DM = d/+/#ccc-pu

is asymptotically distributed as N (0, 1), where

- 1
d= d
M Zt: f
and

r

K

K
Uccc—DM = % (Z M; Z ’?;lc + Z Zﬂ.{mj Z ;J,;’C-j)
i k=—K

i g k=—K'

where M; is the number of samples in test set ¢, M is the total number of samples, 4} is the estimated lag-k
autocovariance, and 4,7 is the estimated lag-k cross-covariance.




[11. Adapting GPR towards
Futures Trading Strategy

4. Model Evaluation & Comparison, cont.
4.2 Criterion

The criterion used are square error (SE) and negative log-likelihood (NLL). SE is
normalized by dividing it with the standard deviation of the test target. NLL is

normalized by subtracting the likelihood of a univariate Gaussian distribution estimated
on the test target.

4.3 Baseline Models

e AugRQ/all-inp: proposed model
e AugRQ/less-inp: do not include the economic variables
e AugRQ/no-inp: only with time relevant variables

e stdRQ/all-inp: single length parameter

stdRQ /no-inp: single time variable A

Linear/all-inp: Bayesian linear regression




[11. Adapting GPR towards
Futures Trading Strategy

5. From Prediction to Trading Decision
5.1 Prediction

holding the time series index constant to NN, the operation time constant to the time My of the last
observation, the other input wvariable constant to their last-observed values :r?h (slow-moving variables
that represent a “level”), and varying the target time over the forecasting period A.

5.2 Trading Decision

Forecast information ratio

E[pe2 — pe1|Ls,]]

IR =
\/Var[ﬁﬂ — Pu1 |Itﬂ]

where

VﬁI[ﬁtQ — Dn |It0] = Vﬁl‘[ﬁtﬂlrt{}] + Var[ﬁtﬂlrt(]] =2 COV[ﬁtl:ﬁtQ |It[)]




IV. Potential Improvements

e Scalability with large dataset, and efficient training algorithm. Implemented in the paper: random
sampling subset + retraining, might introduce bias of prediction accuracy towards the selected input.
Potential refinement:

(a) approximate ¥ with lower rank matrix [2,3]. For example,

Ya¥Y =37 2[Z.7]"" 2[T.]]

e Assumption in prediction: the slow-moving assumption of features. “for slow-moving variables that
represent a level, one can conceivably keep their value constant to the last known realization across
the forecasting period”. Unused features, could be calibrated in the kernel function as well.

e Feature selection: any better, or more (temporal) features that are not ‘slow-moving’? any better
modelling of kernel?

e extro-covariance with other type of futures contract.




