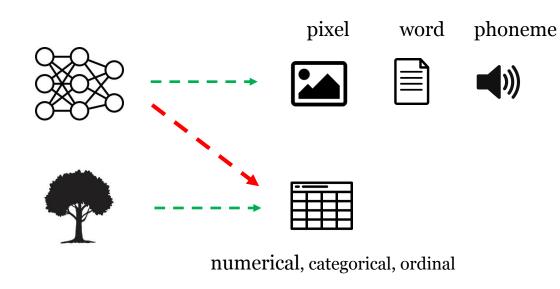


Tree-Regularized Tabular Embeddings

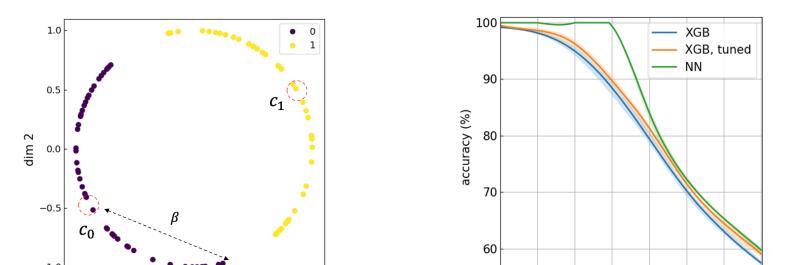
Xuan Li*, Yun Wang, Bo Li

Data-Centric Tabular Learning

Goal: taper the performance gap between tree-based and NN models on tabular data.



Limitation: tabular data are heterogenous in nature, and an underemphasis on feature alignment could overshadow the efficacy of NN.



Evaluations

Experiment results on 91 OpenML benchmark datasets [2] with binary classification task. Reported in percentaged AUC.

Robustness

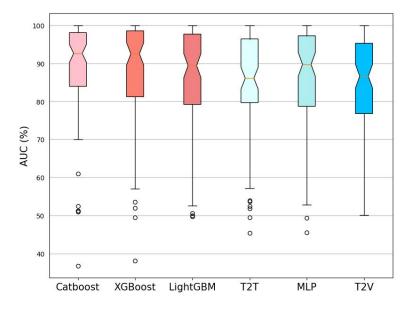
Cat	Boost 2	KGBoost	LightGBM	T2V	T2T	MLP	SAINT	ResNet
	91	91	91	88	88	88	59	73

datasets can be evaluated

Comparison w.r.t. tree-based models

Algorithm	Rank ↓				AUC (%) ↑
	min	max	mean	median	mean
CatBoost	1	6	2.38	2	88.06
XGBoost	1	6	2.83	2	87.70
LightGBM	1	6	3.16	3	86.37
T2T	1	6	4.07	4	84.63
MLP	1	6	4.22	4	84.42
T2V	1	6	4.45	5	83.15

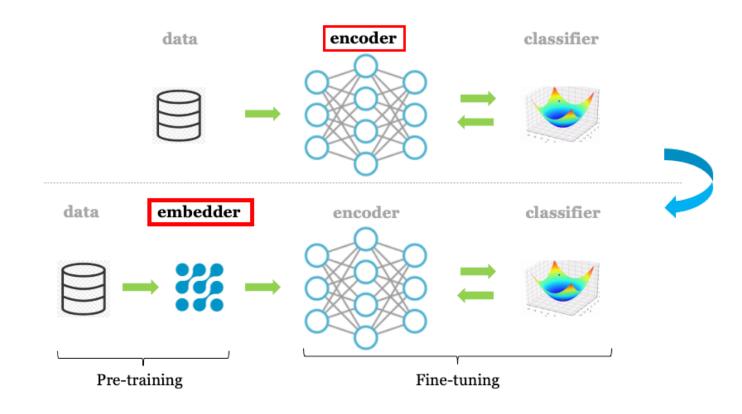
ranked by average AUC



distribution of AUC

synthetic experiments: NN > tree in homogeneous space

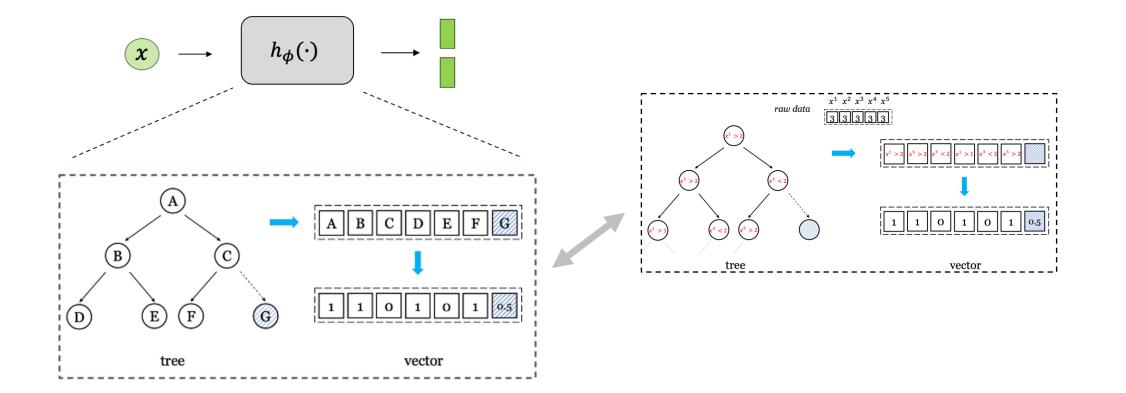
Proposal: calibrate tabular data to fit NN from a data-centric perspective.



In-Batch Tree-Regularized Embeddings

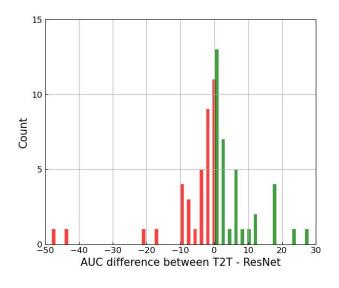
Overview:

- binarize representations through pairwise comparison between variable values and thresholds in tree nodes.
- reformulated as a single vector (T_2V) [1] or an array of tokens (T_2T) for MLP and transformer blocks.

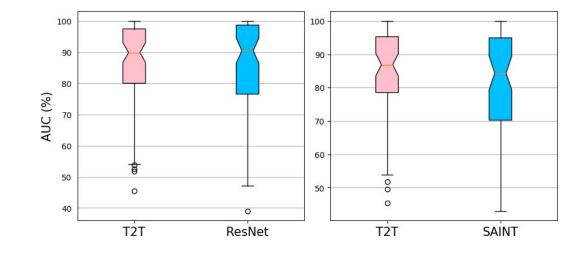


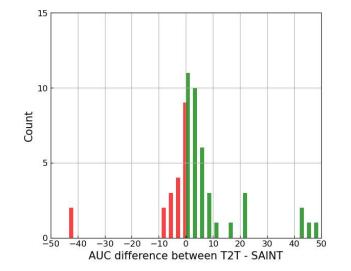
Comparison w.r.t. NN models

Algorithm		F	Rank↓	AUC (%) ↑		
	min	max	mean	median	mean	
ResNet	1	4	2.15	2	84.87	
T2T	1	4	2.29	2	84.72	
T2V	1	4	2.61	3	83.92	
SAINT	1	4	3.01	3	81.46	



histogram of T2T – ResNet / SAINT





T2V

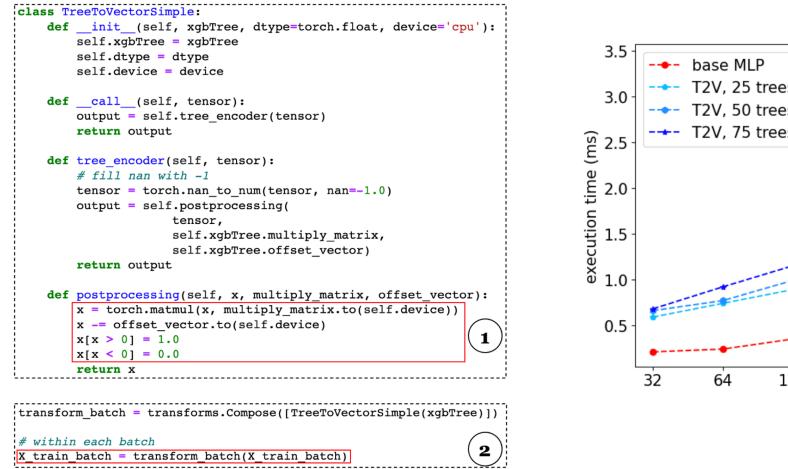
T2T

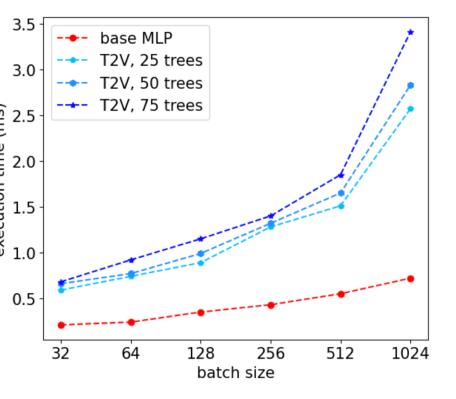
Main Takeaways

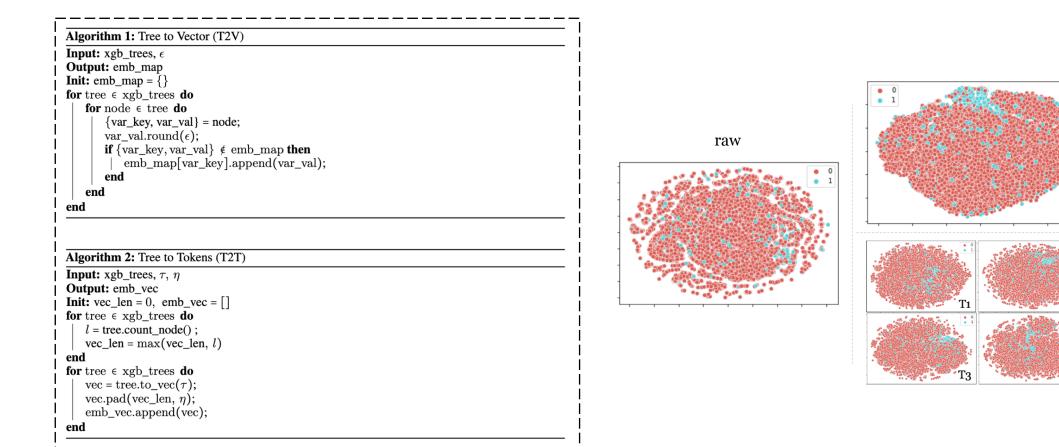
- 1. Implemented scalable algorithms to obtain tree-regularized embeddings T2V and T2T. The latter is more performant and can serve as tabular tokenizer for multimodal learning with transformer-based framework.
- 2. Although not reported in the paper, T2V with 4-layered transformer scales and outperforms tree-based models on production binary classification tasks. Interestingly, similar results are also observed in [3].
- 3. Future works: generalize to regression and multi-class classification tasks; explore consistent encoding of numerical and categorical features; call for industrial-scale benchmark datasets.

*T*₂*T* tokens: generated through level-order traversal with padding

Implementation: in-batch transformation, supporting industrial use cases with hundreds of columns and millions of rows.







left: pseudocode of T2V and T2T algorithm right: t-SNE plot of raw, T2V and T2T embedding on internal dataset

left: pseudocode of in-batch transformation with matrix manipulation right: time complexity between T2V and vanilla features with MLP

References

Appendix

[1] Vadim Borisov et al. "DeepTLF: robust deep neural networks for heterogeneous tabular data"
[2] Duncan McElfresh et al. "When Do Neural Nets Outperform Boosted Trees on Tabular Data?"
[3] Hu, X., et al. "Deepeta: How uber predicts arrival times using deep learning."